AI Acumen Learning Journey (Module 5)
This module explores how to tailor large language models (LLMs) and retrieval-augmented generation (RAG) systems to specific use cases. Learners will compare key customization approaches — prompt engineering, fine-tuning, and RAG — and discover how each can optimize AI model performance.
Through detailed lessons and hands-on practice, participants will learn to design and build robust RAG pipelines, evaluate emerging small language models like Phi-3, and understand the evolving trends in fine-tuning for 2025.
The module culminates in a practical project where learners create and submit their own RAG-based AI assistant.
| Verantwoordelijke | Lahoucine Ben Brahim |
|---|---|
| Laatst bijgewerkt | 02-10-2025 |
| Doorlooptijd | 4 uur 48 minuten |
| Leden | 2 |
Deel deze cursus
Koppeling delen
Deel op sociale media
Delen via email
Alsjeblieft in te loggen om dit te delen AI Acumen Learning Journey (Module 5) via e-mail.
Basis
-
Module 5: Customizing AI & Building Bespoke Solutions8Lessen · 4 uur 8 min
-
RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models
-
RAG vs. fine-tuning vs. prompt engineering
-
The fundamentals of building a robust RAG pipeline
-
Building a Robust RAG Pipeline: The Complete Guide for 2025
-
Tiny but mighty: The Phi-3 small language models with big potential
-
Boring is good
-
LLM Fine-Tuning in 2025
-
Guide to LLM Fine-Tuning in 2025
-
-
Practical Exercise: Build Your Own RAG AI Assistant2Lessen · 40 min
-
Practical Exercise: Build Your Own RAG AI Assistant
-
Sumbit your own RAG AI Assistant
-