AI Acumen Learning Journey (Module 5)
This module explores how to tailor large language models (LLMs) and retrieval-augmented generation (RAG) systems to specific use cases. Learners will compare key customization approaches — prompt engineering, fine-tuning, and RAG — and discover how each can optimize AI model performance.
Through detailed lessons and hands-on practice, participants will learn to design and build robust RAG pipelines, evaluate emerging small language models like Phi-3, and understand the evolving trends in fine-tuning for 2025.
The module culminates in a practical project where learners create and submit their own RAG-based AI assistant.
| Responsable | Bright Learning Academy |
|---|---|
| Dernière mise à jour | 02/10/2025 |
| Temps d'achèvement | 4 heures 48 minutes |
| Membres | 2 |
Partager ce cours
Partager le lien
Partager sur les réseaux sociaux
Partager par e-mail
Veuillez s'inscrire afin de partager ce AI Acumen Learning Journey (Module 5) par e-mail.
Basique
-
Module 5: Customizing AI & Building Bespoke Solutions8Leçons · 4 h 8 min
-
RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models
-
RAG vs. fine-tuning vs. prompt engineering
-
The fundamentals of building a robust RAG pipeline
-
Building a Robust RAG Pipeline: The Complete Guide for 2025
-
Tiny but mighty: The Phi-3 small language models with big potential
-
Boring is good
-
LLM Fine-Tuning in 2025
-
Guide to LLM Fine-Tuning in 2025
-
-
Practical Exercise: Build Your Own RAG AI Assistant2Leçons · 40 min
-
Practical Exercise: Build Your Own RAG AI Assistant
-
Sumbit your own RAG AI Assistant
-